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The localization problem of relativistic particles is studied, considering that an 
elementary spin-�89 particle of  nonvanishing mass actually corresponds to an 
extended body. The role of non-Hermitian operators in describing such a system 
is discussed and it is pointed out that the localization of  such a system is linked 
to the global conservation of fermion number given by the "internal helicity" 
of  such a system. The localization region is then determined by means of  
imprimitivity systems for particular representations of  the de Sitter group 
S0(4, 1). 

1. INTRODUCTION 

The localization problem of relativistic particles is well known in 
quantum physics. The problem stems from the fact that the position operator 
is non-Hermitian in this case. Many authors have tried to solve the problem 
by constructing position operators in such a way that this may be made 
compatible with the well-known properties of quantum mechanics. 
However, none of these approaches are beyond ambiguity. Newton and 
Wigner (1949) in their classical work showed that for a single particle the 
notion of localizability (whenever it exists) is uniquely determined by 
relativistic kinematics. But in that work and later in a mathematically more 
rigorous reformulation by Wightman (1962) it was pointed out that the 
position operator exists for particles with nonvanishing masses and arbitrary 
masses but does not exist for massless particles realized in nature. Indeed, 
the trouble with Newton-Wigner solution is that it violates the Lorentz 
invariance of localization. This directly excludes massless particles from its 
purview. But if we take into account that Lorentz invariance is the basic 
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canon of any relati,..,istic system as it is generally considered, Newton-Wigner 
treatment of massive particles also seems to be improper. 

The localization of  massless particles has been studied by Bayen and 
Niederle (1981), by replacing the Poincar6 group by the conformal group, 
R2 |  by the de Sitter group SOo(4, 1) as suggested by Angelopoulos 
et al. (1974), and introducing the concept of localizability by means of 
imprimitivity systems for the particular representations of the de Sitter group 
SO0(4, 1). They have shown that massless particles having spin <2 can 
indeed be localized in a region topologically equivalent to a 3-sphere. 
However, since for a particle of nonvanishing mass conformal interpretation 
is not possible, it appears that this approach is unsuitable for such systems. 

Kalnay (1970, 1971), in a series of papers, has tried to construct a 
position operator for a massive as well as for a massless particle in a unified 
way incorporating Lorentz invariance. However, the generalized position 
operator prescribed by him is found to be non-Hermitian and even nonnor- 
mal. But he has emphatically argued that non-Hermitian operators should 
not be rejected outright, since they may give more information than the 
usual Hermitian operators. Indeed, he has pointed out, in general non- 
Hermitian operators have eigenvalues that are complex numbers, which 
may be thought of as an ordered pair of real numbers. This extra variable 
may lead to some intrinsic property of the particles. In view of this, Kalnay 
and Toledo (1967) have considered that a relativistic particle may not be 
a point particle and the notion of localization should be modified such that 
the values of the positions be certain regions. Non-Hermitian operators are 
suitable in this approach because to each coordinate a pair of variables is 
associated that may denote some property of the extended body in addition 
to the location of the center of the region. 

In this paper, we try to show that the localization of relativistic massive 
particles with spatial extension can be achieved in the framework suggested 
by Angelopoulos, et al (1974) and developed by Bayen and Niederle (1981) 
for massless particles, extending the Poincar~ group where we have an extra 
constraint, such as the global conservation of fermion number, which is 
uniquely satisfied. It is noted that for massless particles, the fermion number 
is given by the helicity states of a spin-�89 particle and hence no extra constraint 
is necessary. But for massive particles, the extended nature of the body 
allows us to have the "internal helicity" or orientation of the system, which 
is identified with the fermion number. Once the localization region is 
achieved; the position operator can be defined as a non-Hermitian operator 
where the pair of variables of the complex eigenvalue can be associated 
with the center of the region and the fermion number, which is a constant 
of motion. This formalism, however, compels us to consider all bosons as 
composite states. 
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2. AXIOMS OF LOCALIZABILITY AND NON-HERMITIAN 
OPERATORS 

Newton and Wigner (1949) for the proper definition of the position of 
a particle the following axioms. 

(a) The set So of  states localized at the origin of  space-time is a linear 
set. 

(b) The set is invariant under spatial rotations about the origin 0 and 
under space-time reflection. 

(c) States localized at ( t = O , x )  and ( t = O , x ' )  with x ~ x '  are 
orthogonal. 

(d) A condition of  mathematical good behavior holds. 
On the basis of the above assumptions, Newton and Wigner deduced 

a unique position operator,  which for spin zero takes the form in the 
p-representation, t = O, 

XNw= 2eg 

The 3-localized states in (t = 0, a) i.e., the eigenfunctions in 

are given by 

X - - N W  - - N W  Nw~a = a ~ a  (2) 

1 
q~w [ e x p ( - i a -  p)]Ep 1/2 (3) 

(2~-) 3/2 

As mentioned earlier, this solution violates the Lorentz invariance of localiz- 
ation. This has prompted several authors to generalize the basic axioms. 
Note that axiom (c) expresses the fact that the probability of  finding the 
particle at t = 0 at the point x is zero if it is certainly at x'  ~ x at the same 
time. Evidently this is not necessary if the particle has Some spatial extension. 
Related to this is the fact that the hermiticity of x may be abandoned. 

Kalnay ( 1970, 1971 ) has developed a position operator that is applicable 
to both massive and massless particles and which can be put in the momen- 
tum representation, Heisenberg picture, t = 0, as follows: 

X = A(iO/Op)A (4) 

where A is the corresponding projection operator in the allowed vector 
space. The position operator (4) is non-Hermitian and even nonnormal,  
but its eigenvalues are real. However, this can be analysed as a binary 
variable, as is the case with all non-Hermitian operators, and in that case 
its first part is equal for spinless massive mesons to Newton-Wigner 's 
operator, while the second part is a constant of  the motion. 
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This aspect suggests that the second part of  the binary variable may 
lead us to an intrinsic property of the particle. Indeed, when this non- 
Hermitian operator is taken to represent an extended region, the first part 
of the binary variable corresponds to the location of a center of the region 
and the second part is related to some intrinsic property. This intrinsic 
property, we show in the following section, is related to the fermion number 
of a spin-�89 particle. Thus, we see that Kalnay's generalized non-Hermitian 
operator (5) can be taken to correspond to the location of the center of the 
region and a quantum number that is a constant of motion. 

In case the particle is localized in a region A of  a space S, a projection 
operator E(A) acting in a Hilbert space ~ can be defined, which obeys the 
following axioms (Wightman, 1962; Bayen and Niederle, 1982): 

1. For every Borel set A c  S, there is a projection operator E(A), the 
expectation value of which is the probability of finding the particle in A. 

2. E(A~ h a 2 )  = E(A,) �9 E(A~). 
3. E(A, w A2) = E(A,)  + E (A2) -  E(A 1 ~ A2). 
4. E(S) = 1. 
5. E(gA)= U(g)E(A)U-I(g), g~SO(4,1). 

Here U is a unitary operator from the representation of  the de Sitter group 
S0(4, 1). 

Any family of such projection operators {E(A)} uniquely determines 
the position operator qk via the spectral decomposition 

qk=f~_AdE ({Ak ~ A}) (5) 

Note that any function A---~ E(A) from the Borel sets to the projection 
operator E(A) satisfying the above axioms froms a system of imprimitivity 
for the representation of  the group S0(4, 1). Utilizing this property, we 
study in the following section the topological properties of the localization 
region of  a relativistic massive particle, which also gives rise to the fermion 
number as a good quantum number. 

3. LOCALIZATION REGION AND THE CONSERVATION OF 
FERMION NUMBER 

An extended body can be acted upon by the de Sitter group S0(4, 1). 
Indeed, the wave function of the form ~(x~,, ~:,), where ~, is an internal 
variable attached to each point in space-time, gives rise to dilatation in 
addition to Poincar~ transformation and thus may be taken to depict an 
extension of the internal space. When ~:, is identified with a "direction 
vector" or "velocity vector," this may be taken to correspond to an "internal 
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helicity." Roman et al. (1972) have shown that the inclusion of this extra 
variable extends the Poincar6 group S0(3, 1) to the de Sitter group SO(4, 1). 

The irreducible representations of SO(4) are characterized by two 
numbers (ko, n), where [kol is integer or half-integer and n is a natural 
number. These two numbers are related to the values of the Casimir operators 
by 

�89 "~ = k2+ (Ikol+ n) 2 -1  
(6) 

where S~r a, fl = 1, 2, 3, 4, are the generators of the group. The irreducible 
representations of S0(4, 1) have been investigated by Dixmier (1961). Barut 
and Bohm (1970) have shown that the representation of S0(4, 1) given by 
ko = 1/2 and - 1 / 2  can be extended to two inequivalent representations of 
S0(4, 2). In fact, these ko values actually correspond to the eigenvalues of 
the operator Ko = 1/2(a+a-b+b) in the oscillator representation of the 
S0(3)1| 2 basis of SO(4, 1). Barut and Bohm have shown that no 
other representations except those corresponding to the eigenvalues ko= 
+1/2 and - 1 / 2  apart from the trivial case ko=0 can be fully extended to 
S0(4, 2). Besides, the value of/Co as well as its signature is an S0(4, 2) 
invariant. 

The representation (s = 0, /Co = 0) in the conformal interpretation of 
O(4, 2) describes massless spin-0 particles. The representation (s = 1/2, ko = 
:~1/2) describes the helicity states of a massless spinor. Now, for a massive 
particle, the conformal invariance breaks down, so that ko = •  cannot 
be interpreted as heIicity states in the conventional sense. To find the 
relevance of these states for a massive particle, we note that an 0(4, 2) 
spinor is given by an eight-component spinor, which may be split into two 
four-component spinors with a certain "orientation." Indeed, the doublet 
of four component spinors 

representing an 0(4, 2) spinor 4: is characterized by the fact that the space, 
time, or conformal reflection changes 4~i~ 0~2- In Minkowski space, they 
satisfy the coupled equations 

i~bl = -m~b2, i~b2 = -m41 (7) 

However, it is also possible to obtain a pair of standard Dirac spinors in 
Minkowski space 

. g~2 
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to represent the conformal spinor such that only conformal reflection 
changes, ~1 ~ ~2- Now, the coupled equations (8) do not allow the Cartan 
semispinor doublets 

4~2 
to be physically observable unless m = 0. However, if we define 4~2 and 4~2 
such that they represent two different "internal helicity" states given by 
k0 = +1/2  and - 1 /2 ,  i.e., q~l = O(ko=+l/2) and cb2 = 0(ko= -1 /2 ) ,  Eqs. (8) 
can be reduced to a single equation with two internal degrees of freedom, 
where the linear combination of ~(ko = - 1 / 2 )  and 0(k0 = + 1/2) represents 
an eigenstate. Now, to retain the four-component nature of the Dirac spinor 
in Minkowski space, these two internal degrees of freedom should be 
assoicated with particle-antiparticle states. 

Evidently this property of 4~ and 4~2 satisfies the criterion that space, 
time, or conformal reflection changes one into the other. This follows from 
the fact that the parity operator changes the sign of/Co. Besides, since 4~ 
and 4~2 are here related to particle-antiparticle states, the T operator also 
changes 4~1 ~ 4~2. Again considering the Iwasawa decomposition K A N  of  
the de Sitter group S0(4, 1), where K is the group SO(4), the maximal 
compact subgroup of S0(4, 1), A the group SO(l, 1) generated by D, the 
dilatation operator (D = M54), and N is a nilpotent Abelian group generated 
by Ki, the special conformal transformation (Ki = M~5 + M~4, i = 1, 2, 3), it 
appears that conformal reflection (x4---> x'4=-x4, xs--~x'5=-xs) also 
changes 4~ 1 ~--- 4~2 when the "internal helicity"/Co = • 1 / 2 and - 1 / 2 are taken 
to correspond to the states q~ and 4~2, respectively. Thus, the doublet of 
massive spinors with spatial extension of their structures with the above 
properties can represent an 0(4 ,  2) spinor. In view of this, we can avoid 
the other representations of the operator Ko = �89 - b+b) of the S0(4, 1) 
group, except those with eigenvalues ko = •  since these are the only 
eigenvalues that can be fully extended to S0(4, 2) and remain irreducible 
under S0(4, 1). Thus, the "internal helicity" states can be related to the 
fermion number of the massive particle when described as an extended 
body, since this can take the unique values ko = +1/2  and - 1 / 2  only. 

This description of a charged and massive fermion as an extended 
object finds its relevance from earlier papers (Bandypadhyay, 1973, 1974), 
where it was shown that the charge and mass of an elementary fermion 
(lepton) can be taken to be of dynamical origin. There it was shown that 
a charged lepton such as e-  (/x-) can be represented by (~'es) (~,~s), where 
s is the system of photons interacting weakly with the two-component 
massless ~'e(~',) at n space-time points within a quantized domain and these 
nonlocal interactions can give rise to the charge and mass of an e- (/-*-) 
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as well as two more components necessary for a four-component spinor. 
The two additional componets arise here from the form factor, which 
describes the internal spatial extension r such that r ~ - r  gives rise to 
particle and antiparticle states. These internal orientations actually corre- 
spond to the two /co values depicting fermion number. In this picture the 
quantization of  charge is related with the quantization of space-time. 

To find the localization region of such an extended object given by 
$0(4,  1) group structure, we here use Mackey's theory of imprimitivity. In 
this connection we briefly mention two main results of the Mackey theory 
(1949, 1952, 1953, 1958). 

Let H be a closed subgroup of the lie group ~ (countable at infinity) 
L the unitary representation of H on Hilbert space ~, and U t the corre- 
sponding unitarily induced representation of ~, and let cg/H be the left 
coset space considered as a ~-transformation space. Then every unitarily 
induced representation U c of ~ gives rise to a canonical system of imprimi- 
tivity E L defined by 

if x H ~  A [ x ~  
= f ( o  ) x  if xH Z A \ f ~  H c] (E'-(A)f)(x) (8) 

Mackey's imprimitivity theorem states: 
If there exists a transitive system of imprimitivity E for a given rep- 

resentation U of ~d based on ~d/H, then there is a unitary representation 
L of H unique to within unitary equivalence, such that E is unitarily 
equivalent to the canonical system of imprimitivity for U g. 

This suggests that there is no system of imprimitivity based on ~d/H 
other than the canonical one and it exists whenever the considered rep- 
resentation U of ~ appears to be unitarily induced by a unitary representa- 
tion of H. Thus, a particle is localizable in Am ~ / H  if the corresponding 
representation U of q3 is unitarily induced by a unitary representation of H. 

In our approach a relativistic massive spinor with spatial extension is 
described by the unitary irreducible representation U L of the de Sitter group 
S0(4, 1). If  there exists a subgroup H of S0(4,  1) such that the obtained 
representation of S0(4, 1) appears to be unitarily induced by a unitary 
representation of /4 ,  the corresponding particle is localized in a region A 
of the space S0(4, 1)/H. As the subgroup H we take the group MAN, 
where M is the group SO(3), A the group S0(1, 1) generated by dilatation 
D, and N is a nilpotent Abelian group generated by K~ as discussed above. 
Now considering the Iwasawa decomposition of S0(4, 1) as KAN, K being 
the group SO(4), we find that the extended massive particle yields the 
topology of a 3-sphere 

S0(4,  1)~MAN ~ K / M  = S 3 (9) 

in which the particle is localized. Note that the same topology has been 
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derived by Bayen and Niederle (1981) for a massless particle using the 
conformal interpretation of  such particles. 

4. D I S C U S S I O N  

We have shown that the non-Hermitian operator associated with the 
localization problem of  a relativistic particle actually represents the extended 
nature of  a massive system as well as the conservation of fermion number. 
In this picture fermion number  is associated with the "internal helicity" or 
orientation of the system. For massless spinors, the conformal interpretation 
helps us to define a localization region that is a 3-sphere and the fermion 
number is given by the helicity states. In this case, though the particle may 
be of extended nature, the extension as such does not give rise to any 
physical property as in the case of  a massive particle, and so for all practical 
purposes massless particles will appear  as point particles. 

For massless bosons, Bayen and Niederle have shown that a localization 
region given by a 3-sphere can be defined using the conformal interpretation 
only for spin <2. But in case of  spin 1, the unitary irreducible representations 
171+1, H~- I ,  H~ appear  as subrepresentations of  the nonunitary representa- 
tion induced by a representation aCD 1 of  M A N ,  where H~ appears as an 
extension of + - II1,103 II1,_ 1. Thus, the spin-1 massless particle can only be 
localized in a generalized sense. In view of these difficulties and the fact 
that in our above formalism bosons cannot be accommodated,  we argue 
that all bosons are composite states. 

Finally, we point out that in our formalism, fermion number is a globally 
conserved quantum number  and since this is linked with the localization 
property of  a relativistic particle, any fermion number-nonconserving pro- 
cess will be in contradiction with relativistic invariance. An important 
consequence of this is that a magnetic monopole  is not likely to exist. This 
is due to the fact that when a fermion passes through the core of  the 
monopole,  the fermion is t ransformed into an antifermion, as demanded 
by the conservation of angular momentum (Ellis, 1982). From our above 
analysis, however, we see that this cannot occur in a Lorentz-invariant way. 
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